skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Witts, J D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract To explore both environmental change and the response of non‐fossilizing phytoplankton across the Cretaceous‐Paleogene (K‐Pg) boundary mass extinction event, we determined changes in organic matter (OM) sources using a range of apolar (n‐alkanes, acyclic isoprenoids, steranes, and hopanes) and polar (BIT index) biomarkers. We analyzed two K‐Pg proximal sections, located in the Mississippi Embayment, Gulf Coastal Plain (USA), covering ∼300 kyrs prior to and ∼3 myrs after the K‐Pg event. The OM abundance and composition changed dramatically across the boundary. The post‐impact ejecta layer and burrowed unit are characterized by an increase in the mass accumulation rate (MAR) of plant and soil biomarkers, including high‐molecular‐weightn‐alkanes and C29steranes as well as the BIT index, related to an erosive period which transported terrestrial OM to the ocean in the aftermath of the impact event. At the same time, MARs of putative aquatic biomarkers decrease (low‐molecular‐weightn‐alkanes, C27steranes and pristane and phytane), which suggests a collapse of the marine phytoplankton community. The increase of terrestrial OM to the ocean, during the first 280 kyrs after the Chicxulub impact event, is a combination of reworked kerogen, soil and some plant material. Crucially, within the latter part of this erosion period, only ∼160 kyrs after the K‐Pg do biomarkers return to distributions similar to those in the upper Cretaceous, although not to pre‐impact MARs. Thus, our results suggest a long‐term interval for the full sedimentary and ecological recovery of the non‐fossilizing phytoplankton community after this event. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. Mass extinction at the Cretaceous–Paleogene (K-Pg) boundary coin- cides with the Chicxulub bolide impact and also falls within the broader time frame of Deccan trap emplacement. Critically, though, empirical evidence as to how either of these factors could have driven observed extinction patterns and carbon cycle perturbations is still lacking. Here, using boron isotopes in foraminifera, we docu- ment a geologically rapid surface-ocean pH drop following the Chicxulub impact, supporting impact-induced ocean acidification as a mechanism for ecological collapse in the marine realm. Subsequently, surface water pH rebounded sharply with the extinction of marine calcifiers and the associated imbalance in the global carbon cycle. Our reconstructed water-column pH gradients, combined with Earth sys- tem modeling, indicate that a partial ∼50% reduction in global ma- rine primary productivity is sufficient to explain observed marine carbon isotope patterns at the K-Pg, due to the underlying action of the solubility pump. While primary productivity recovered within a few tens of thousands of years, inefficiency in carbon export to the deep sea lasted much longer. This phased recovery scenario recon- ciles competing hypotheses previously put forward to explain the K-Pg carbon isotope records, and explains both spatially variable patterns of change in marine productivity across the event and a lack of extinction at the deep sea floor. In sum, we provide insights into the drivers of the last mass extinction, the recovery of marine carbon cycling in a postextinction world, and the way in which ma- rine life imprints its isotopic signal onto the geological record. 
    more » « less